Back to Search Start Over

Properties of tissue within prostate tumors and treatment planning implications for ablation therapies.

Authors :
Beitel-White N
Aycock KN
Manuchehrabadi N
Zhao Y
Imran KM
Coutermarsh-Ott S
Allen IC
Lorenzo MF
Davalos RV
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2021 Nov; Vol. 2021, pp. 1539-1542.
Publication Year :
2021

Abstract

Irreversible electroporation (IRE) is a promising alternative therapy for the local treatment of prostate tumors. The procedure involves the direct insertion of needle electrodes into the target zone, and subsequent delivery of short but high-voltage pulses. Successful outcomes rely on adequate exposure of the tumor to a threshold electrical field. To aid in predicting this exposure, computational models have been developed, yet often do not incorporate the appropriate tissue-specific properties. This work aims to quantify electrical conductivity behavior during IRE for three types of tissue present in the target area of a prostate cancer ablation: the tumor tissue itself, the surrounding healthy tissue, and potential areas of necrosis within the tumor. Animal tissues were used as a stand-in for primary samples. The patient-derived prostate tumor tissue showed very similar responses to healthy porcine prostate tissue. An examination of necrotic tissue inside the tumors revealed a large difference, however, and a computational model showed that a necrotic core with differing electrical properties can cause unexpected inhomogeneities within the treatment region.

Details

Language :
English
ISSN :
2694-0604
Volume :
2021
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
34891577
Full Text :
https://doi.org/10.1109/EMBC46164.2021.9630534