Back to Search
Start Over
Automatic Detection of EEG Epileptiform Abnormalities in Traumatic Brain Injury using Deep Learning.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2021 Nov; Vol. 2021, pp. 302-305. - Publication Year :
- 2021
-
Abstract
- Traumatic brain injury (TBI) is a sudden injury that causes damage to the brain. TBI can have wide-ranging physical, psychological, and cognitive effects. TBI outcomes include acute injuries, such as contusion or hematoma, as well as chronic sequelae that emerge days to years later, including cognitive decline and seizures. Some TBI patients develop posttraumatic epilepsy (PTE), or recurrent and unprovoked seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis, the process by which a normal brain becomes capable of generating seizures. These biomarkers would allow for a higher standard of care by identifying patients at risk of developing PTE as candidates for antiepileptogenic interventions. In this paper, we use deep neural network architectures to automatically detect potential biomarkers of PTE from electroencephalogram (EEG) data collected between post-injury day 1-7 from patients with moderate-to-severe TBI. Continuous EEG is often part of multimodal monitoring for TBI patients in intensive care units. Clinicians review EEG to identify the presence of epileptiform abnormalities (EAs), such as seizures, periodic discharges, and abnormal rhythmic delta activity, which are potential biomarkers of epileptogenesis. We show that a recurrent neural network trained with continuous EEG data can be used to identify EAs with the highest accuracy of 80.78%, paving the way for robust, automated detection of epileptiform activity in TBI patients.
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2021
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 34891296
- Full Text :
- https://doi.org/10.1109/EMBC46164.2021.9630242