Back to Search
Start Over
Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing.
- Source :
-
Nature communications [Nat Commun] 2021 Dec 09; Vol. 12 (1), pp. 7165. Date of Electronic Publication: 2021 Dec 09. - Publication Year :
- 2021
-
Abstract
- Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.<br /> (© 2021. The Author(s).)
- Subjects :
- Acetyltransferases genetics
Acetyltransferases immunology
Animals
Bacterial Proteins genetics
Bacterial Proteins immunology
Female
Genome, Bacterial
Humans
Legionella pneumophila classification
Legionella pneumophila immunology
Legionella pneumophila isolation & purification
Mice
Mice, Inbred C57BL
Neutrophils immunology
Phylogeny
Complement System Proteins immunology
Legionella pneumophila genetics
Legionnaires' Disease immunology
Legionnaires' Disease microbiology
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 12
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 34887398
- Full Text :
- https://doi.org/10.1038/s41467-021-27478-z