Back to Search Start Over

Coronary Flow Assessment Using Accelerated 4D Flow MRI With Respiratory Motion Correction.

Authors :
Blanken CPS
Schrauben EM
Peper ES
Gottwald LM
Coolen BF
van Wijk DF
Piek JJ
Strijkers GJ
Planken RN
van Ooij P
Nederveen AJ
Source :
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2021 Aug 17; Vol. 9, pp. 725833. Date of Electronic Publication: 2021 Aug 17 (Print Publication: 2021).
Publication Year :
2021

Abstract

Magnetic resonance imaging (MRI) can potentially be used for non-invasive screening of patients with stable angina pectoris to identify probable obstructive coronary artery disease. MRI-based coronary blood flow quantification has to date only been performed in a 2D fashion, limiting its clinical applicability. In this study, we propose a framework for coronary blood flow quantification using accelerated 4D flow MRI with respiratory motion correction and compressed sensing image reconstruction. We investigate its feasibility and repeatability in healthy subjects at rest. Fourteen healthy subjects received 8 times-accelerated 4D flow MRI covering the left coronary artery (LCA) with an isotropic spatial resolution of 1.0 mm <superscript>3</superscript> . Respiratory motion correction was performed based on 1) lung-liver navigator signal, 2) real-time monitoring of foot-head motion of the liver and LCA by a separate acquisition, and 3) rigid image registration to correct for anterior-posterior motion. Time-averaged diastolic LCA flow was determined, as well as time-averaged diastolic maximal velocity (V <subscript>MAX</subscript> ) and diastolic peak velocity (V <subscript>PEAK</subscript> ). 2D flow MRI scans of the LCA were acquired for reference. Scan-rescan repeatability and agreement between 4D flow MRI and 2D flow MRI were assessed in terms of concordance correlation coefficient (CCC) and coefficient of variation (CV). The protocol resulted in good visibility of the LCA in 11 out of 14 subjects (six female, five male, aged 28 ± 4 years). The other 3 subjects were excluded from analysis. Time-averaged diastolic LCA flow measured by 4D flow MRI was 1.30 ± 0.39 ml/s and demonstrated good scan-rescan repeatability (CCC/CV = 0.79/20.4%). Time-averaged diastolic V <subscript>MAX</subscript> (17.2 ± 3.0 cm/s) and diastolic V <subscript>PEAK</subscript> (24.4 ± 6.5 cm/s) demonstrated moderate repeatability (CCC/CV = 0.52/19.0% and 0.68/23.0%, respectively). 4D flow- and 2D flow-based diastolic LCA flow agreed well (CCC/CV = 0.75/20.1%). Agreement between 4D flow MRI and 2D flow MRI was moderate for both diastolic V <subscript>MAX</subscript> and V <subscript>PEAK</subscript> (CCC/CV = 0.68/20.3% and 0.53/27.0%, respectively). In conclusion, the proposed framework of accelerated 4D flow MRI equipped with respiratory motion correction and compressed sensing image reconstruction enables repeatable diastolic LCA flow quantification that agrees well with 2D flow MRI.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Blanken, Schrauben, Peper, Gottwald, Coolen, van Wijk, Piek, Strijkers, Planken, van Ooij and Nederveen.)

Details

Language :
English
ISSN :
2296-4185
Volume :
9
Database :
MEDLINE
Journal :
Frontiers in bioengineering and biotechnology
Publication Type :
Academic Journal
Accession number :
34869250
Full Text :
https://doi.org/10.3389/fbioe.2021.725833