Back to Search Start Over

Triggered kV Imaging During Spine SBRT for Intrafraction Motion Management.

Authors :
Koo J
Nardella L
Degnan M
Andreozzi J
Yu HM
Penagaricano J
Johnstone PAS
Oliver D
Ahmed K
Rosenberg SA
Wuthrick E
Diaz R
Feygelman V
Latifi K
Moros EG
Redler G
Source :
Technology in cancer research & treatment [Technol Cancer Res Treat] 2021 Jan-Dec; Vol. 20, pp. 15330338211063033.
Publication Year :
2021

Abstract

Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(nā€‰=ā€‰10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.

Details

Language :
English
ISSN :
1533-0338
Volume :
20
Database :
MEDLINE
Journal :
Technology in cancer research & treatment
Publication Type :
Academic Journal
Accession number :
34855577
Full Text :
https://doi.org/10.1177/15330338211063033