Back to Search Start Over

Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: An MRI study.

Authors :
Ito Y
Fukuda M
Matsuzawa H
Masuda H
Kobayashi Y
Hasegawa N
Kitaura H
Kakita A
Fujii Y
Source :
Epilepsy research [Epilepsy Res] 2021 Dec; Vol. 178, pp. 106815. Date of Electronic Publication: 2021 Nov 21.
Publication Year :
2021

Abstract

Purpose: The currently available indicators-sensitivity and specificity of expert radiological evaluation of MRIs-to identify mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are deficient, as they cannot be easily assessed. We developed and investigated the use of a novel convolutional neural network trained on preoperative MRIs to aid diagnosis of these conditions.<br />Subjects and Methods: We enrolled 141 individuals: 85 with clinically diagnosed mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis International League Against Epilepsy (HS ILAE) type 1 who had undergone anterior temporal lobe hippocampectomy were assigned to the MTLE-HS group, and 56 epilepsy clinic outpatients diagnosed as nonepileptic were assigned to the normal group. We fine-tuned a modified CNN (mCNN) to classify the fully connected layers of ImageNet-pretrained VGG16 network models into the MTLE-HS and control groups. MTLE-HS was diagnosed using MRI both by the fine-tuned mCNN and epilepsy specialists. Their performances were compared.<br />Results: The fine-tuned mCNN achieved excellent diagnostic performance, including 91.1% [85%, 96%] mean sensitivity and 83.5% [75%, 91%] mean specificity. The area under the resulting receiver operating characteristic curve was 0.94 [0.90, 0.98] (DeLong's method). Expert interpretation of the same image data achieved a mean sensitivity of 73.1% [65%, 82%] and specificity of 66.3% [50%, 82%]. These confidence intervals were located entirely under the receiver operating characteristic curve of the fine-tuned mCNN.<br />Conclusions: Deep learning-based diagnosis of MTLE-HS from preoperative MR images using our fine-tuned mCNN achieved a performance superior to the visual interpretation by epilepsy specialists. Our model could serve as a useful preoperative diagnostic tool for ascertaining hippocampal atrophy in patients with MTLE.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-6844
Volume :
178
Database :
MEDLINE
Journal :
Epilepsy research
Publication Type :
Academic Journal
Accession number :
34837826
Full Text :
https://doi.org/10.1016/j.eplepsyres.2021.106815