Back to Search Start Over

The Effects of Structural Alterations in the Polyamine and Amino Acid Moieties of Philanthotoxins on Nicotinic Acetylcholine Receptor Inhibition in the Locust, Schistocerca gregaria .

Authors :
Luck VL
Richards DP
Shaikh AY
Franzyk H
Mellor IR
Source :
Molecules (Basel, Switzerland) [Molecules] 2021 Nov 19; Vol. 26 (22). Date of Electronic Publication: 2021 Nov 19.
Publication Year :
2021

Abstract

Alterations in the polyamine and amino acid (tyrosine) moieties of philanthotoxin-343 (PhTX-343) were investigated for their effects on the antagonism of nicotinic acetylcholine receptors (nAChRs) isolated from the locust ( Schistocerca gregaria ) mushroom body. Through whole-cell patch-clamp recordings, the philanthotoxin analogues in this study were shown to cause inhibition of the inward current when co-applied with acetylcholine (ACh). PhTX-343 (IC <subscript>50</subscript> = 0.80 μM at -75 mV) antagonised locust nAChRs in a use-dependent manner, suggesting that it acts as an open-channel blocker. The analogue in which both the secondary amine functionalities were replaced with methylene groups (i.e., PhTX-12) was ~6-fold more potent (IC <subscript>50</subscript> (half-maximal inhibitory concentration) = 0.13 μM at -75 mV) than PhTX-343. The analogue containing cyclohexylalanine as a substitute for the tyrosine moiety of PhTX-343 (i.e., Cha-PhTX-343) was also more potent (IC <subscript>50</subscript> = 0.44 μM at -75 mV). A combination of both alterations to PhTX-343 generated the most potent analogue, i.e., Cha-PhTX-12 (IC <subscript>50</subscript> = 1.71 nM at -75 mV). Modulation by PhTX-343 and Cha-PhTX-343 fell into two distinct groups, indicating the presence of two pharmacologically distinct nAChR groups in the locust mushroom body. In the first group, all concentrations of PhTX-343 and Cha-PhTX-343 inhibited responses to ACh. In the second group, application of PhTX-343 or Cha-PhTX-343 at concentrations ≤100 nM caused potentiation, while concentrations ≥ 1 μM inhibited responses to ACh. Cha-PhTX-12 may have potential to be developed into insecticidal compounds with a novel mode of action.

Details

Language :
English
ISSN :
1420-3049
Volume :
26
Issue :
22
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
34834099
Full Text :
https://doi.org/10.3390/molecules26227007