Back to Search Start Over

Calcite Nanotuned Chitinous Skeletons of Giant Ianthella basta Marine Demosponge.

Authors :
Kertmen A
Petrenko I
Schimpf C
Rafaja D
Petrova O
Sivkov V
Nekipelov S
Fursov A
Stelling AL
Heimler K
Rogoll A
Vogt C
Ehrlich H
Source :
International journal of molecular sciences [Int J Mol Sci] 2021 Nov 22; Vol. 22 (22). Date of Electronic Publication: 2021 Nov 22.
Publication Year :
2021

Abstract

Marine sponges were among the first multicellular organisms on our planet and have survived to this day thanks to their unique mechanisms of chemical defense and the specific design of their skeletons, which have been optimized over millions of years of evolution to effectively inhabit the aquatic environment. In this work, we carried out studies to elucidate the nature and nanostructural organization of three-dimensional skeletal microfibers of the giant marine demosponge Ianthella basta , the body of which is a micro-reticular, durable structure that determines the ideal filtration function of this organism. For the first time, using the battery of analytical tools including three-dimensional micro-X-ray Fluorescence (3D-µXRF), X-ray diffraction (XRD), infra-red (FTIR), Raman and Near Edge X-ray Fine Structure (NEXAFS) spectroscopy, we have shown that biomineral calcite is responsible for nano-tuning the skeletal fibers of this sponge species. This is the first report on the presence of a calcitic mineral phase in representatives of verongiid sponges which belong to the class Demospongiae. Our experimental data suggest a possible role for structural amino polysaccharide chitin as a template for calcification. Our study suggests further experiments to elucidate both the origin of calcium carbonate inside the skeleton of this sponge and the mechanisms of biomineralization in the surface layers of chitin microfibers saturated with bromotyrosines, which have effective antimicrobial properties and are responsible for the chemical defense of this organism. The discovery of the calcified phase in the chitinous template of I. basta skeleton is expected to broaden the knowledge in biomineralization science where the calcium carbonate is regarded as a valuable material for applications in biomedicine, environmental science, and even in civil engineering.

Details

Language :
English
ISSN :
1422-0067
Volume :
22
Issue :
22
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
34830470
Full Text :
https://doi.org/10.3390/ijms222212588