Back to Search Start Over

Fucoidan and Derived Oligo-Fucoses: Structural Features with Relevance in Competitive Inhibition of Gastrointestinal Norovirus Binding.

Authors :
Hanisch FG
Aydogan C
Schroten H
Source :
Marine drugs [Mar Drugs] 2021 Oct 21; Vol. 19 (11). Date of Electronic Publication: 2021 Oct 21.
Publication Year :
2021

Abstract

Norovirus infections belong to the most common causes of human gastroenteritis worldwide and epidemic outbreaks are responsible for hundreds of thousands of deaths annually. In humans, noroviruses are known to bind to gastrointestinal epithelia via recognition of blood-group active mucin-type O-glycans. Considering the involvement of l-α-fucose residues in these glycans, their high valency on epithelial surfaces far surpasses the low affinity, though specific interactions of monovalent milk oligosaccharides. Based on these findings, we attempted to identify polyfucoses (fucans) with the capacity to block binding of the currently most prevalent norovirus strain GII.4 (Sydney, 2012, JX459908) to human and animal gastrointestinal mucins. We provide evidence that inhibitory effects on capsid binding are exerted in a competitive manner by α-fucosyl residues on Fucus vesiculosus fucoidan, but also on the galacto-fucan from Undaria pinnatifida and their oligo-fucose processing products. Insight into novel structural aspects of fucoidan and derived oligosaccharides from low-mass Undaria pinnatifida were revealed by GCMS and MALDI mass spectrometry. In targeting noroviral spread attenuation, this study provides first steps towards a prophylactic food additive that is produced from algal species.

Details

Language :
English
ISSN :
1660-3397
Volume :
19
Issue :
11
Database :
MEDLINE
Journal :
Marine drugs
Publication Type :
Academic Journal
Accession number :
34822462
Full Text :
https://doi.org/10.3390/md19110591