Back to Search Start Over

Transgenic Overexpression of Galectin-3 in Pancreatic β Cells Attenuates Hyperglycemia in Mice: Synergistic Antidiabetic Effect With Exogenous IL-33.

Authors :
Jovicic N
Petrovic I
Pejnovic N
Ljujic B
Miletic Kovacevic M
Pavlovic S
Jeftic I
Djukic A
Srejovic I
Jakovljevic V
Lukic ML
Source :
Frontiers in pharmacology [Front Pharmacol] 2021 Nov 05; Vol. 12, pp. 714683. Date of Electronic Publication: 2021 Nov 05 (Print Publication: 2021).
Publication Year :
2021

Abstract

Galectin-3 (Gal-3) has diverse roles in inflammatory and autoimmune diseases. There is evidence that Gal-3 plays a role in both type 1 and type 2 diabetes. While the role of Gal-3 expression in immune cells invading the pancreatic islets in the experimental model of type 1 diabetes mellitus has been already studied, the importance of the overexpression of Gal-3 in the target β cells is not defined. Therefore, we used multiple low doses of streptozotocin (MLD-STZ)-induced diabetes in C57Bl/6 mice to analyze the effect of transgenic (TG) overexpression of Gal-3 in β cells. Our results demonstrated that the overexpression of Gal-3 protected β cells from apoptosis and attenuated MLD-STZ-induced hyperglycemia, glycosuria, and ketonuria. The cellular analysis of pancreata and draining lymph nodes showed that Gal-3 overexpression significantly decreased the number of pro-inflammatory cells without affecting the presence of T-regulatory cells. As the application of exogenous interleukin 33 (IL-33) given from the beginning of MLD-STZ diabetes induction attenuates the development of disease, by increasing the presence of regulatory FoxP3 <superscript>+</superscript> ST2 <superscript>+</superscript> cells, we evaluated the potential synergistic effect of the exogenous IL-33 and TG overexpression of Gal-3 in β cells at the later stage of diabetogenesis. The addition of IL-33 potentiated the survival of β cells and attenuated diabetes even when administered later, after the onset of hyperglycemia (12-18 days), suggesting that protection from apoptosis and immunoregulation by IL-33 may attenuate type 1 diabetes.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Jovicic, Petrovic, Pejnovic, Ljujic, Miletic Kovacevic, Pavlovic, Jeftic, Djukic, Srejovic, Jakovljevic and Lukic.)

Details

Language :
English
ISSN :
1663-9812
Volume :
12
Database :
MEDLINE
Journal :
Frontiers in pharmacology
Publication Type :
Academic Journal
Accession number :
34803672
Full Text :
https://doi.org/10.3389/fphar.2021.714683