Back to Search Start Over

Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts.

Authors :
Marfella R
D'Onofrio N
Trotta MC
Sardu C
Scisciola L
Amarelli C
Balestrieri ML
Grimaldi V
Mansueto G
Esposito S
D'Amico M
Golino P
Signoriello G
De Feo M
Maiello C
Napoli C
Paolisso G
Source :
Metabolism: clinical and experimental [Metabolism] 2022 Feb; Vol. 127, pp. 154936. Date of Electronic Publication: 2021 Nov 18.
Publication Year :
2022

Abstract

Background: The pathogenesis of experimental diabetic cardiomyopathy may involve the activator protein 1 (AP-1) member, JunD. Using non-diabetic heart transplant (HTX) in recipients with diabetes, we examined the effects of the diabetic milieu (hyperglycemia and insulin resistance) on cardiac JunD expression over 12 months. Because sodium/glucose cotransporter-2 inhibitors (SGLT2i) significantly reverse high glucose-induced AP-1 binding in the proximal tubular cell, we investigated JunD expression in a subgroup of type 2 diabetic recipients receiving SGLT2i treatment.<br />Methods: We evaluated 77 first HTX recipients (40 and 37 patients with and without diabetes, respectively). Among the recipients with diabetes, 17 (45.9%) were receiving SGLT2i treatment. HTX recipients underwent standard clinical evaluation (metabolic status, echocardiography, coronary computed tomography angiography, and endomyocardial biopsy). In the biopsy samples, we evaluated JunD, insulin receptor substrates 1 and 2 (IRS1 and IRS2), peroxisome proliferator-activated receptor-γ (PPAR-γ), and ceramide levels using real-time polymerase chain reaction and immunofluorescence. The biopsy evaluations in this study were performed at 1-4 weeks (basal), 5-12 weeks (intermediate), and up to 48 weeks (final, end of 12-month follow-up) after HTX.<br />Results: There was a significant early and progressive increase in the cardiac expression of JunD/PPAR-γ and ceramide levels, along with a significant decrease in IRS1 and IRS2 in recipients with diabetes but not in those without diabetes. These molecular changes were blunted in patients with diabetes receiving SGLT2i treatment.<br />Conclusion: Early pathogenesis in human diabetic cardiomyopathy is associated with JunD/PPAR-γ overexpression and lipid accumulation following HTX in recipients with diabetes. Remarkably, this phenomenon was reduced by concomitant therapy with SGLT2i, which acted directly on diabetic hearts.<br />Competing Interests: Declaration of competing interest The authors declare that they have no conflict of interest.<br /> (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1532-8600
Volume :
127
Database :
MEDLINE
Journal :
Metabolism: clinical and experimental
Publication Type :
Academic Journal
Accession number :
34801581
Full Text :
https://doi.org/10.1016/j.metabol.2021.154936