Back to Search Start Over

New insight into the response and transport of nitrate in karst groundwater to rainfall events.

Authors :
Wang ZJ
Yue FJ
Lu J
Wang YC
Qin CQ
Ding H
Xue LL
Li SL
Source :
The Science of the total environment [Sci Total Environ] 2022 Apr 20; Vol. 818, pp. 151727. Date of Electronic Publication: 2021 Nov 17.
Publication Year :
2022

Abstract

Although numerous studies focused on nitrate source, transformation and transport of river water in karst area have been reported, it's still unclear in understanding nitrate main source and transformation in karst groundwater system and how nitrate transport from soil to water during rainfall events in karst critical zone. In order to explore the response and transport of nitrate in karst groundwater to rainfall events, different depths of well water before, during and after rainfall event were sampled, and hillslope runoff, surface runoff of different land-use types during rainfall event were sampled synchronously at a typical karst agricultural catchment in Southwest China. Results showed that fluctuations of EC, pH and DO in deep borehole well (W1) and artesian well (W2) were small, on the contrary, variations of EC and DO in shallow well (W3) were large during sampling period. The nitrate concentrations and isotopic values indicated that nitrate in karst groundwater mainly originated from chemical fertilizer (CF), and influenced by denitrification process. High intensity of denitrification was observed in deep groundwater (87%) and artesian well water (almost 100%). Extremely high dual nitrate isotope values up to 46.8 ± 1.5‰ and 24.7 ± 0.5‰ were found in the deep artesian well. The small variation of water chemistry (EC, DO and pH), nitrate concentration and dual nitrate isotope values in deep wells during sampling period suggested that newly supplied nitrogen in deep groundwater during rainfall events also comes from deep groundwater. Low nitrogen concentrations in hillslope subsurface flow and surface runoff suggests that nitrogen transport process leading to increase of water nitrogen content mainly occur in depression. Nitrogen in depression soil is mainly transported to groundwater through fissures, fractures and conduits, rather than through vertical migration processes in the soil during rainfall events.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
818
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
34800464
Full Text :
https://doi.org/10.1016/j.scitotenv.2021.151727