Back to Search
Start Over
MCP mediated active targeting calcium phosphate hybrid nanoparticles for the treatment of orthotopic drug-resistant colon cancer.
- Source :
-
Journal of nanobiotechnology [J Nanobiotechnology] 2021 Nov 17; Vol. 19 (1), pp. 367. Date of Electronic Publication: 2021 Nov 17. - Publication Year :
- 2021
-
Abstract
- Background: Colon cancer is a most common malignant cancer in digestive system, and it is prone to develop resistance to the commonly used chemotherapy drugs, leading to local recurrence and metastasis. Paris saponin VII (PSVII) could not only inhibit the proliferation of colon cancer cells but also effectively induce apoptosis of drug-resistant colon cancer cells and reduce the metastasis of drug-resistant colon cancer cells as well. However, PSVII was insoluble in water and fat. It displayed no selective distribution in body and could cause severe hemolysis. Herein, colon cancer targeting calcium phosphate nanoparticles were developed to carry PSVII to treat drug-resistant colon cancer.<br />Results: PSVII carboxymethyl-β-cyclodextrin inclusion compound was successfully encapsulated in colon cancer targeting calcium phosphate nanoparticles (PSVII@MCP-CaP) by using modified citrus pectin as stabilizer agent and colon cancer cell targeting moiety. PSVII@MCP-CaP significantly reduced the hemolysis of PSVII. Moreover, by specific accumulating in orthotopic drug-resistant colon cancer tissue, PSVII@MCP-CaP markedly inhibited the growth of orthotopic drug-resistant colon cancer in nude mice. PSVII@MCP-CaP promoted the apoptosis of drug-resistant colon cancer cells through mitochondria-mediated apoptosis pathway. Moreover, PSVII@MCP-CaP significantly inhibited the invasion and migration of drug-resistant colon cancer cells by increasing E-cadherin protein expression and reducing N-cadherin and MMP-9 protein expression.<br />Conclusion: PSVII@MCP-CaP has great potential in the treatment of drug-resistant colon cancer. This study also explores a new method to prepare active targeting calcium phosphate nanoparticles loaded with a fat and water insoluble compound in water.<br /> (© 2021. The Author(s).)
- Subjects :
- Animals
Apoptosis drug effects
Calcium Phosphates chemistry
Cell Proliferation drug effects
Drug Resistance, Neoplasm
Mice
Mice, Nude
Saponins chemistry
Saponins pharmacology
Antineoplastic Agents chemistry
Antineoplastic Agents pharmacology
Colonic Neoplasms metabolism
Nanoparticle Drug Delivery System chemistry
Nanoparticles chemistry
Pectins chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1477-3155
- Volume :
- 19
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 34789268
- Full Text :
- https://doi.org/10.1186/s12951-021-01115-9