Back to Search Start Over

Differential adhesion regulates neurite placement via a retrograde zippering mechanism.

Authors :
Sengupta T
Koonce NL
Vázquez-Martínez N
Moyle MW
Duncan LH
Emerson SE
Han X
Shao L
Wu Y
Santella A
Fan L
Bao Z
Mohler WA
Shroff H
Colón-Ramos DA
Source :
ELife [Elife] 2021 Nov 16; Vol. 10. Date of Electronic Publication: 2021 Nov 16.
Publication Year :
2021

Abstract

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil , and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.<br />Competing Interests: TS, NK, NV, MM, LD, SE, XH, LS, YW, AS, LF, ZB, WM, HS, DC No competing interests declared

Details

Language :
English
ISSN :
2050-084X
Volume :
10
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
34783657
Full Text :
https://doi.org/10.7554/eLife.71171