Cite
Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study.
MLA
Yan, Jing, et al. “Predicting 1p/19q Co-Deletion Status from Magnetic Resonance Imaging Using Deep Learning in Adult-Type Diffuse Lower-Grade Gliomas: A Discovery and Validation Study.” Laboratory Investigation; a Journal of Technical Methods and Pathology, vol. 102, no. 2, Feb. 2022, pp. 154–59. EBSCOhost, https://doi.org/10.1038/s41374-021-00692-5.
APA
Yan, J., Zhang, S., Sun, Q., Wang, W., Duan, W., Wang, L., Ding, T., Pei, D., Sun, C., Wang, W., Liu, Z., Hong, X., Wang, X., Guo, Y., Li, W., Cheng, J., Liu, X., Li, Z.-C., & Zhang, Z. (2022). Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Laboratory Investigation; a Journal of Technical Methods and Pathology, 102(2), 154–159. https://doi.org/10.1038/s41374-021-00692-5
Chicago
Yan, Jing, Shenghai Zhang, Qiuchang Sun, Weiwei Wang, Wenchao Duan, Li Wang, Tianqing Ding, et al. 2022. “Predicting 1p/19q Co-Deletion Status from Magnetic Resonance Imaging Using Deep Learning in Adult-Type Diffuse Lower-Grade Gliomas: A Discovery and Validation Study.” Laboratory Investigation; a Journal of Technical Methods and Pathology 102 (2): 154–59. doi:10.1038/s41374-021-00692-5.