Back to Search Start Over

Taxonomic Insights and Its Type Cyclization Correlation of Volatile Sesquiterpenes in Vitex Species and Potential Source Insecticidal Compounds: A Review.

Authors :
Barreto IC
de Almeida AS
Sena Filho JG
Source :
Molecules (Basel, Switzerland) [Molecules] 2021 Oct 23; Vol. 26 (21). Date of Electronic Publication: 2021 Oct 23.
Publication Year :
2021

Abstract

Sesquiterpenes (SS) are secondary metabolites formed by the bonding of 3 isoprene (C5) units. They play an important role in the defense and signaling of plants to adapt to the environment, face stress, and communicate with the outside world, and their evolutionary history is closely related to their physiological functions. This review considers their presence and extensively summarizes the 156 sesquiterpenes identified in Vitex taxa , emphasizing those with higher concentrations and frequency among species and correlating with the insecticidal activities and defensive responses reported in the literature. In addition, we classify the SS based on their chemical structures and addresses cyclization in biosynthetic origin. Most relevant sesquiterpenes of the Vitex genus are derived from the germacredienyl cation mainly via bicyclogermacrene and germacrene C, giving rise to aromadrendanes, a skeleton with the highest number of representative compounds in this genus, and 6,9-guaiadiene, respectively, indicating the production of 1.10-cyclizing sesquiterpene synthases. These enzymes can play an important role in the chemosystematics of the genus from their corresponding routes and cyclizations, constituting a new approach to chemotaxonomy. In conclusion, this review is a compilation of detailed information on the profile of sesquiterpene in the Vitex genus and, thus, points to new unexplored horizons for future research.

Details

Language :
English
ISSN :
1420-3049
Volume :
26
Issue :
21
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
34770814
Full Text :
https://doi.org/10.3390/molecules26216405