Back to Search
Start Over
Regulator of G-Protein Signalling 4 (RGS4) negatively modulates nociceptin/orphanin FQ opioid receptor signalling: Implication for l-Dopa-induced dyskinesia.
- Source :
-
British journal of pharmacology [Br J Pharmacol] 2023 Apr; Vol. 180 (7), pp. 927-942. Date of Electronic Publication: 2022 Jan 12. - Publication Year :
- 2023
-
Abstract
- Background and Purpose: Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gα <subscript>i/o</subscript> and Gα <subscript>q</subscript> subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia.<br />Experimental Approach: HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured.<br />Key Results: RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum.<br />Conclusions and Implications: RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression.<br />Linked Articles: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.<br /> (© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
Details
- Language :
- English
- ISSN :
- 1476-5381
- Volume :
- 180
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- British journal of pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 34767639
- Full Text :
- https://doi.org/10.1111/bph.15730