Back to Search Start Over

CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.

Authors :
Demirjian NL
Varghese BA
Cen SY
Hwang DH
Aron M
Siddiqui I
Fields BKK
Lei X
Yap FY
Rivas M
Reddy SS
Zahoor H
Liu DH
Desai M
Rhie SK
Gill IS
Duddalwar V
Source :
European radiology [Eur Radiol] 2022 Apr; Vol. 32 (4), pp. 2552-2563. Date of Electronic Publication: 2021 Nov 10.
Publication Year :
2022

Abstract

Objectives: To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).<br />Methods: A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).<br />Results: The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.<br />Conclusion: Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.<br />Key Points: • Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.<br /> (© 2021. European Society of Radiology.)

Details

Language :
English
ISSN :
1432-1084
Volume :
32
Issue :
4
Database :
MEDLINE
Journal :
European radiology
Publication Type :
Academic Journal
Accession number :
34757449
Full Text :
https://doi.org/10.1007/s00330-021-08344-4