Back to Search Start Over

Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi-Cohort Study.

Authors :
Zhu YC
Du H
Jiang Q
Zhang T
Huang XJ
Zhang Y
Shi XR
Shan J
AlZoubi A
Source :
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine [J Ultrasound Med] 2022 Aug; Vol. 41 (8), pp. 1961-1974. Date of Electronic Publication: 2021 Nov 09.
Publication Year :
2022

Abstract

Background: This pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification.<br />Methods: A total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists.<br />Results: The TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests.<br />Conclusions: Applying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.<br /> (© 2021 American Institute of Ultrasound in Medicine.)

Details

Language :
English
ISSN :
1550-9613
Volume :
41
Issue :
8
Database :
MEDLINE
Journal :
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
Publication Type :
Academic Journal
Accession number :
34751458
Full Text :
https://doi.org/10.1002/jum.15873