Back to Search
Start Over
Automated anatomical labeling of a topologically variant abdominal arterial system via probabilistic hypergraph matching.
- Source :
-
Medical image analysis [Med Image Anal] 2022 Jan; Vol. 75, pp. 102249. Date of Electronic Publication: 2021 Oct 08. - Publication Year :
- 2022
-
Abstract
- Automated anatomical vessel labeling of the abdominal arterial system is a crucial topic in medical image processing. One reason for this is the importance of the abdominal arterial system in the human body, and another is that such labeling is necessary for the related disease diagnoses, treatments and epidemiological population analyses. We define a hypergraph representation of the abdominal arterial system as a family tree model with a probabilistic hypergraph matching framework for automated vessel labeling. Then we treat the labelling problem as the convex optimization problem and solve it with the maximum a posteriori(MAP) combined the likelihood obtained by geometric labelling with the family tree topology-based knowledge. Geometrically, we utilize XGBoost ensemble learning with an intrinsic geometric feature importance analysis for branch-level labeling. In topology, the defined family tree model of the abdominal arterial system is transferred as a Markov chain model using a constrained traversal order method and further the Markov chain model is optimized by a hidden Markov model (HMM). The probability distribution of the target branches for each candidate anatomical name is predicted and effectively embedded in the HMM model. This approach is evaluated with the leave-one-out method on 37 clinical patients' abdominal arteries, and the average accuracy is 91.94%. The obtained results are better than those of the state-of-art method with an F1 score of 93.00% and a recall of 93.00%, as the proposed method simultaneously handles the anatomical structural variability and discriminates between the symmetric branches. It is demonstrated to be suitable for labelling branches of the abdominal arterial system and can also be extended to similar tubular organ networks, such as arterial or airway networks.<br />Competing Interests: Declaration of Competing Interest We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property. We further confirm that any aspect of the work covered in this manuscript that has involved either experimental animals or human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept email from wangxingce@bnu.edu.cn.<br /> (Copyright © 2021. Published by Elsevier B.V.)
Details
- Language :
- English
- ISSN :
- 1361-8423
- Volume :
- 75
- Database :
- MEDLINE
- Journal :
- Medical image analysis
- Publication Type :
- Academic Journal
- Accession number :
- 34743037
- Full Text :
- https://doi.org/10.1016/j.media.2021.102249