Back to Search Start Over

Tracing the Evolution of Human Gene Regulation and Its Association with Shifts in Environment.

Authors :
Colbran LL
Johnson MR
Mathieson I
Capra JA
Source :
Genome biology and evolution [Genome Biol Evol] 2021 Nov 05; Vol. 13 (11).
Publication Year :
2021

Abstract

As humans populated the world, they adapted to many varying environmental factors, including climate, diet, and pathogens. Because many of these adaptations were mediated by multiple noncoding variants with small effects on gene regulation, it has been difficult to link genomic signals of selection to specific genes, and to describe the regulatory response to selection. To overcome this challenge, we adapted PrediXcan, a machine learning method for imputing gene regulation from genotype data, to analyze low-coverage ancient human DNA (aDNA). First, we used simulated genomes to benchmark strategies for adapting PrediXcan to increase robustness to incomplete data. Applying the resulting models to 490 ancient Eurasians, we found that genes with the strongest divergent regulation among ancient populations with hunter-gatherer, pastoralist, and agricultural lifestyles are enriched for metabolic and immune functions. Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent regulation among genes proposed to be involved in diet-related local adaptation, and the predicted effects on regulation often suggest explanations for known signals of selection, for example, at FADS1, GPX1, and LEPR. In contrast, skin pigmentation genes show little regulatory change over a 38,000-year time series of 2,999 ancient Europeans, suggesting that adaptation mainly involved large-effect coding variants. This work demonstrates that combining aDNA with present-day genomes is informative about the biological differences among ancient populations, the role of gene regulation in adaptation, and the relationship between genetic diversity and complex traits.<br /> (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)

Details

Language :
English
ISSN :
1759-6653
Volume :
13
Issue :
11
Database :
MEDLINE
Journal :
Genome biology and evolution
Publication Type :
Academic Journal
Accession number :
34718543
Full Text :
https://doi.org/10.1093/gbe/evab237