Back to Search Start Over

Kernel Methods for Predicting Yields of Chemical Reactions.

Authors :
Haywood AL
Redshaw J
Hanson-Heine MWD
Taylor A
Brown A
Mason AM
Gärtner T
Hirst JD
Source :
Journal of chemical information and modeling [J Chem Inf Model] 2022 May 09; Vol. 62 (9), pp. 2077-2092. Date of Electronic Publication: 2021 Oct 26.
Publication Year :
2022

Abstract

The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reactivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models outperformed the quantum chemical SVR models, along the dimension of each reaction component. The applicability of the models was assessed with respect to similarity to training. Prospective predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalizability of the models, with particular interest along the aryl halide dimension.

Details

Language :
English
ISSN :
1549-960X
Volume :
62
Issue :
9
Database :
MEDLINE
Journal :
Journal of chemical information and modeling
Publication Type :
Academic Journal
Accession number :
34699222
Full Text :
https://doi.org/10.1021/acs.jcim.1c00699