Back to Search Start Over

IAF, QGF, and QDF Peptides Exhibit Cholesterol-Lowering Activity through a Statin-like HMG-CoA Reductase Regulation Mechanism: In Silico and In Vitro Approach.

Authors :
Silva M
Philadelpho B
Santos J
Souza V
Souza C
Santiago V
Silva J
Souza C
Azeredo F
Castilho M
Cilli E
Ferreira E
Source :
International journal of molecular sciences [Int J Mol Sci] 2021 Oct 14; Vol. 22 (20). Date of Electronic Publication: 2021 Oct 14.
Publication Year :
2021

Abstract

In this study, in silico approaches are employed to investigate the binding mechanism of peptides derived from cowpea β-vignin and HMG-CoA reductase. With the obtained information, we designed synthetic peptides to evaluate their in vitro enzyme inhibitory activity. In vitro, the total protein extract and <3 kDa fraction, at 5000 µg, support this hypothesis (95% and 90% inhibition of HMG-CoA reductase, respectively). Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides were predicted to bind to the substrate binding site of HMGCR via HMG-CoAR. In silico, it was established that the mechanism of HMG-CoA reductase inhibition largely entailed mimicking the interactions of the decalin ring of simvastatin and via H-bonding; in vitro studies corroborated the predictions, whereby the HMG-CoA reductase activity was decreased by 69%, 77%, and 78%, respectively. Our results suggest that Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides derived from cowpea β-vignin have the potential to lower cholesterol synthesis through a statin-like regulation mechanism.

Details

Language :
English
ISSN :
1422-0067
Volume :
22
Issue :
20
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
34681729
Full Text :
https://doi.org/10.3390/ijms222011067