Back to Search
Start Over
Lactobacillus rhamnosus and Bifidobacterium longum alleviate colitis and cognitive impairment in mice by regulating IFN-γ to IL-10 and TNF-α to IL-10 expression ratios.
- Source :
-
Scientific reports [Sci Rep] 2021 Oct 19; Vol. 11 (1), pp. 20659. Date of Electronic Publication: 2021 Oct 19. - Publication Year :
- 2021
-
Abstract
- Gut lactobacilli and bifidobacteria on the immune homeostasis. Therefore, to understand the mechanism in vivo, we selected human fecal Lactobacillus rhamnosus NK210 and Bifidobacterium longum NK219, which strongly suppressed the IFN-γ to IL-10 expression (IIE) ratio in lipopolysaccharide-stimulated macrophages. Thereafter, we examined their effects on the endotoxin, antibiotics, or antitumor drug-stimulated immune imbalance in mice. Intraperitoneal injection of lipopolysaccharide and oral gavage of ampicillin increased IFN-γ and TNF-α expression in the spleen, colon, and hippocampus, while IL-10 expression decreased. However, intraperitoneal injection of cyclophosphamide suppressed IFN-γ, TNF-α, and IL-10 expression. LPS exposure induced splenic natural killer cell cytotoxicity against YAC-1 cells (sNK-C) and peritoneal macrophage phagocytosis against Candida albicans (pMA-P) activities, while cyclophosphamide and ampicillin treatments suppressed sNK-C and pMA-P activities. However, LPS, ampicillin, cyclophosphamide all increased IIE and TNF-α to IL-10 expression (TIE) ratios. Oral administration of NK210 and/or NK219 significantly reduced LPS-induced sNK-C, pMA-P, and IFN-γ expression, while cyclophosphamide- or ampicillin-suppressed sNK-C and pMA-P activities, cyclophosphamide-suppressed IFN-γ, TNF-α, and IL-10 expression, and ampicillin-suppressed IL-10 expression increased. Nevertheless, they suppressed LPS-, ampicillin-, or cyclophosphamide-induced IIE and TIE ratios, cognitive impairment, and gut dysbiosis. In particular, NK219, but not NK210, increased the IIE expression ratio in vitro and in vivo, and enhanced sNK-C and pMA-P activities in normal control mice, while cognitive function and gut microbiota composition were not significantly affected. These findings suggest that NK210, Lactobacillus sp, and NK219, Bifidobacterium additively or synergistically alleviate gut dysbiosis, inflammation, and cognitive impairment with immune imbalance by controlling IIE and TIE ratios.<br /> (© 2021. The Author(s).)
- Subjects :
- Animals
Bifidobacterium metabolism
Bifidobacterium longum pathogenicity
Cognitive Dysfunction microbiology
Cognitive Dysfunction therapy
Colitis microbiology
Colitis therapy
Feces microbiology
Gastrointestinal Microbiome drug effects
Humans
Inflammation metabolism
Interferon-gamma antagonists & inhibitors
Interferon-gamma metabolism
Interleukin-10 metabolism
Lactobacillus metabolism
Lacticaseibacillus rhamnosus pathogenicity
Male
Mice
Mice, Inbred C57BL
Probiotics administration & dosage
Tumor Necrosis Factor-alpha metabolism
Bifidobacterium longum metabolism
Dysbiosis therapy
Lacticaseibacillus rhamnosus metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 34667205
- Full Text :
- https://doi.org/10.1038/s41598-021-00096-x