Back to Search Start Over

IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay.

Authors :
Akaki K
Ogata K
Yamauchi Y
Iwai N
Tse KM
Hia F
Mochizuki A
Ishihama Y
Mino T
Takeuchi O
Source :
ELife [Elife] 2021 Oct 12; Vol. 10. Date of Electronic Publication: 2021 Oct 12.
Publication Year :
2021

Abstract

Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.<br />Competing Interests: KA, KO, YY, NI, KT, FH, AM, YI, TM, OT No competing interests declared<br /> (© 2021, Akaki et al.)

Details

Language :
English
ISSN :
2050-084X
Volume :
10
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
34636324
Full Text :
https://doi.org/10.7554/eLife.71966