Back to Search Start Over

Hemin accumulation and identification of a heme-binding protein clan in K562 cells by proteomic and computational analysis.

Authors :
Tsolaki VC
Georgiou-Siafis SK
Tsamadou AI
Tsiftsoglou SA
Samiotaki M
Panayotou G
Tsiftsoglou AS
Source :
Journal of cellular physiology [J Cell Physiol] 2022 Feb; Vol. 237 (2), pp. 1315-1340. Date of Electronic Publication: 2021 Oct 07.
Publication Year :
2022

Abstract

Heme (iron protoporphyrin IX) is an essential regulator conserved in all known organisms. We investigated the kinetics of intracellular accumulation of hemin (oxidized form) in human transformed proerythroid K562 cells using [ <superscript>14</superscript> C]-hemin and observed that it is time and temperature-dependent, affected by the presence of serum proteins, as well as the amphipathic/hydrophobic properties of hemin. Hemin-uptake exhibited saturation kinetics as a function of the concentration added, suggesting the involvement of a carrier-cell surface receptor-mediated process. The majority of intracellular hemin accumulated in the cytoplasm, while a substantial portion entered the nucleus. Cytosolic proteins isolated by hemin-agarose affinity column chromatography (HACC) were found to form stable complexes with [ <superscript>59</superscript> Fe]-hemin. The HACC fractionation and Liquid chromatography-mass spectrometry analysis of cytosolic, mitochondrial, and nuclear protein isolates from K562 cell extracts revealed the presence of a large number of hemin-binding proteins (HeBPs) of diverse ontologies, including heat shock proteins, cytoskeletal proteins, enzymes, and signaling proteins such as actinin a4, mitogen-activated protein kinase 1 as well as several others. The subsequent computational analysis of the identified HeBPs using HemoQuest confirmed the presence of various hemin/heme-binding motifs [C(X)nC, H, Y] in their primary structures and conformations. The possibility that these HeBPs contribute to a heme intracellular trafficking protein network involved in the homeostatic regulation of the pool and overall functions of heme is discussed.<br /> (© 2021 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1097-4652
Volume :
237
Issue :
2
Database :
MEDLINE
Journal :
Journal of cellular physiology
Publication Type :
Academic Journal
Accession number :
34617268
Full Text :
https://doi.org/10.1002/jcp.30595