Back to Search Start Over

Helminth egg analysis platform (HEAP): An opened platform for microscopic helminth egg identification and quantification based on the integration of deep learning architectures.

Authors :
Lee CC
Huang PJ
Yeh YM
Li PH
Chiu CH
Cheng WH
Tang P
Source :
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi [J Microbiol Immunol Infect] 2022 Jun; Vol. 55 (3), pp. 395-404. Date of Electronic Publication: 2021 Sep 02.
Publication Year :
2022

Abstract

Background: Millions of people throughout the world suffer from parasite infections. Traditionally, technicians use manual eye inspection of microscopic specimens to perform a parasite examination. However, manual operations have limitations that hinder the ability to obtain precise egg counts and cause inefficient identification of infected parasites on co-infections. The technician requirements for handling a large number of microscopic examinations in countries that have limited medical resources are substantial. We developed the helminth egg analysis platform (HEAP) as a user-friendly microscopic helminth eggs identification and quantification platform to assist medical technicians during parasite infection examination.<br />Methods: Multiple deep learning strategies including SSD (Single Shot MultiBox Detector), U-net, and Faster R-CNN (Faster Region-based Convolutional Neural Network) are integrated to identify the same specimen allowing users to choose the best predictions. An image binning and egg-in-edge algorithm based on pixel density detection was developed to increase the performance. Computers with different operation systems can be gathered to lower the computation time using our easy-to-deploy software architecture.<br />Results: A user-friendly interface is provided to substantially increase the efficiency of manual validation. To adapt to low-cost computers, we architected a distributed computing structure with high flexibilities.<br />Conclusions: HEAP serves not only as a prediction service provider but also as a parasitic egg database of microscopic helminth egg image collection, labeling data and pretrained models. All images and labeling resources are free and accessible at http://heap.cgu.edu.tw. HEAP can also be an ideal education and training resource for helminth egg examination.<br /> (Copyright © 2021. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1995-9133
Volume :
55
Issue :
3
Database :
MEDLINE
Journal :
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi
Publication Type :
Academic Journal
Accession number :
34511389
Full Text :
https://doi.org/10.1016/j.jmii.2021.07.014