Back to Search
Start Over
Mitochondrial Metabolism behind Region-Specific Resistance to Ischemia-Reperfusion Injury in Gerbil Hippocampus. Role of PKCβII and Phosphate-Activated Glutaminase.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2021 Aug 07; Vol. 22 (16). Date of Electronic Publication: 2021 Aug 07. - Publication Year :
- 2021
-
Abstract
- Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCβII specific inhibitor peptide βIIV5-3-treated IR. Vehicle or βIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCβII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 μM) to evaluate the inhibition of GLS1 on neuronal viability. PKCβII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by βIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCβII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.
- Subjects :
- Animals
Cerebrovascular Disorders pathology
Gerbillinae
Hippocampus pathology
Mitochondria pathology
Rats
Rats, Wistar
Reperfusion Injury pathology
Cerebrovascular Disorders enzymology
Glutaminase metabolism
Hippocampus enzymology
Mitochondria enzymology
Protein Kinase C beta metabolism
Reperfusion Injury enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 22
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 34445210
- Full Text :
- https://doi.org/10.3390/ijms22168504