Back to Search Start Over

Novel Nested-Seq Approach for SARS-CoV-2 Real-Time Epidemiology and In-Depth Mutational Profiling in Wastewater.

Authors :
Avgeris M
Adamopoulos PG
Galani A
Xagorari M
Gourgiotis D
Trougakos IP
Voulgaris N
Dimopoulos MA
Thomaidis NS
Scorilas A
Source :
International journal of molecular sciences [Int J Mol Sci] 2021 Aug 07; Vol. 22 (16). Date of Electronic Publication: 2021 Aug 07.
Publication Year :
2021

Abstract

Considering the lack of effective treatments against COVID-19, wastewater-based epidemiology (WBE) is emerging as a cost-effective approach for real-time population-wide SARS-CoV-2 monitoring. Here, we report novel molecular assays for sensitive detection and mutational/variant analysis of SARS-CoV-2 in wastewater. Highly stable regions of SARS-CoV-2 RNA were identified by RNA stability analysis and targeted for the development of novel nested PCR assays. Targeted DNA sequencing (DNA-seq) was applied for the analysis and quantification of SARS-CoV-2 mutations/variants, following hexamers-based reverse transcription and nested PCR-based amplification of targeted regions. Three-dimensional (3D) structure models were generated to examine the predicted structural modification caused by genomic variants. WBE of SARS-CoV-2 revealed to be assay dependent, and significantly improved sensitivity achieved by assay combination (94%) vs. single-assay screening (30%-60%). Targeted DNA-seq allowed the quantification of SARS-CoV-2 mutations/variants in wastewater, which agreed with COVID-19 patients' sequencing data. A mutational analysis indicated the prevalence of D614G (S) and P323L (RdRP) variants, as well as of the Β.1.1.7/alpha variant of concern, in agreement with the frequency of Β.1.1.7/alpha variant in clinical samples of the same period of the third pandemic wave at the national level. Our assays provide an innovative cost-effective platform for real-time monitoring and early-identification of SARS-CoV-2 variants at community/population levels.

Details

Language :
English
ISSN :
1422-0067
Volume :
22
Issue :
16
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
34445204
Full Text :
https://doi.org/10.3390/ijms22168498