Back to Search Start Over

Bimodal Nanocomposite Platform with Antibiofilm and Self-Powering Functionalities for Biomedical Applications.

Authors :
Dhall A
Islam S
Park M
Zhang Y
Kim A
Hwang G
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2021 Sep 01; Vol. 13 (34), pp. 40379-40391. Date of Electronic Publication: 2021 Aug 18.
Publication Year :
2021

Abstract

Advances in microelectronics and nanofabrication have led to the development of various implantable biomaterials. However, biofilm-associated infection on medical devices still remains a major hurdle that substantially undermines the clinical applicability and advancement of biomaterial systems. Given their attractive piezoelectric behavior, barium titanate (BTO)-based materials have also been used in biological applications. Despite its versatility, the feasibility of BTO-embedded biomaterials as anti-infectious implantable medical devices in the human body has not been explored yet. Here, the first demonstration of clinically viable BTO-nanocomposites is presented. It demonstrates potent antibiofilm properties against Streptococcus mutans without bactericidal effect while retaining their piezoelectric and mechanical behaviors. This antiadhesive effect led to ∼ 10-fold reduction in colony-forming units in vitro . To elucidate the underlying mechanism for this effect, data depicting unfavorable interaction energy profiles between BTO-nanocomposites and S. mutans using the classical and extended Derjaguin, Landau, Verwey, and Overbeek theories is presented. Direct cell-to-surface binding force data using atomic force microscopy also corroborate reduced adhesion between BTO-nanocomposites and S. mutans . Interestingly, the poling process on BTO-nanocomposites resulted in asymmetrical surface charge density on each side, which may help tackle two major issues in prosthetics-bacterial contamination and tissue integration. Finally, BTO-nanocomposites exhibit superior biocompatibility toward human gingival fibroblasts and keratinocytes. Overall, BTO-embedded composites exhibit broad-scale potential to be used in biological settings as energy-harvestable antibiofilm surfaces.

Details

Language :
English
ISSN :
1944-8252
Volume :
13
Issue :
34
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
34406755
Full Text :
https://doi.org/10.1021/acsami.1c11791