Back to Search Start Over

Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions.

Authors :
Danko D
Malli Mohan GB
Sierra MA
Rucker M
Singh NK
Regberg AB
Bell MS
O'Hara NB
Ounit R
Mason CE
Venkateswaran K
Source :
Frontiers in microbiology [Front Microbiol] 2021 Jul 29; Vol. 12, pp. 608478. Date of Electronic Publication: 2021 Jul 29 (Print Publication: 2021).
Publication Year :
2021

Abstract

Background: Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied.<br />Results: To evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 10 <superscript>2</superscript> colony forming units per 25 cm <superscript>2</superscript> of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter , and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 10 <superscript>5</superscript> to 10 <superscript>6</superscript> copies per 25 cm <superscript>2</superscript> of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes , Methylobacterium oryzae , and M. phyllosphaerae reads were documented.<br />Conclusion: The results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Danko, Malli Mohan, Sierra, Rucker, Singh, Regberg, Bell, O’Hara, Ounit, Mason and Venkateswaran.)

Details

Language :
English
ISSN :
1664-302X
Volume :
12
Database :
MEDLINE
Journal :
Frontiers in microbiology
Publication Type :
Academic Journal
Accession number :
34394013
Full Text :
https://doi.org/10.3389/fmicb.2021.608478