Back to Search Start Over

Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction.

Authors :
Bazzi M
Campione NE
Ahlberg PE
Blom H
Kear BP
Source :
PLoS biology [PLoS Biol] 2021 Aug 10; Vol. 19 (8), pp. e3001108. Date of Electronic Publication: 2021 Aug 10 (Print Publication: 2021).
Publication Year :
2021

Abstract

Sharks (Selachimorpha) are iconic marine predators that have survived multiple mass extinctions over geologic time. Their prolific fossil record is represented mainly by isolated shed teeth, which provide the basis for reconstructing deep time diversity changes affecting different selachimorph clades. By contrast, corresponding shifts in shark ecology, as measured through morphological disparity, have received comparatively limited analytical attention. Here, we use a geometric morphometric approach to comprehensively examine tooth morphologies in multiple shark lineages traversing the catastrophic end-Cretaceous mass extinction-this event terminated the Mesozoic Era 66 million years ago. Our results show that selachimorphs maintained virtually static levels of dental disparity in most of their constituent clades across the Cretaceous-Paleogene interval. Nevertheless, selective extinctions did impact apex predator species characterized by triangular blade-like teeth. This is particularly evident among lamniforms, which included the dominant Cretaceous anacoracids. Conversely, other groups, such as carcharhiniforms and orectolobiforms, experienced disparity modifications, while heterodontiforms, hexanchiforms, squaliforms, squatiniforms, and †synechodontiforms were not overtly affected. Finally, while some lamniform lineages disappeared, others underwent postextinction disparity increases, especially odontaspidids, which are typified by narrow-cusped teeth adapted for feeding on fishes. Notably, this increase coincides with the early Paleogene radiation of teleosts as a possible prey source, and the geographic relocation of disparity sampling "hotspots," perhaps indicating a regionally disjunct extinction recovery. Ultimately, our study reveals a complex morphological response to the end-Cretaceous mass extinction and highlights an event that influenced the evolution of modern sharks.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1545-7885
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
PLoS biology
Publication Type :
Academic Journal
Accession number :
34375335
Full Text :
https://doi.org/10.1371/journal.pbio.3001108