Back to Search
Start Over
Lipidomic Profiling of Clinical Prostate Cancer Reveals Targetable Alterations in Membrane Lipid Composition.
- Source :
-
Cancer research [Cancer Res] 2021 Oct 01; Vol. 81 (19), pp. 4981-4993. Date of Electronic Publication: 2021 Aug 06. - Publication Year :
- 2021
-
Abstract
- Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues ( n = 21), independent unmatched tissues ( n = 47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide ( n = 43). Significant differences in lipid composition were detected and spatially visualized in tumors compared with matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting. SIGNIFICANCE: This study identifies malignancy and treatment-associated changes in lipid composition of clinical prostate cancer tissues, suggesting that mediators of these lipidomic changes could be targeted using existing metabolic agents.<br /> (©2021 American Association for Cancer Research.)
- Subjects :
- Biomarkers
Computational Biology methods
Energy Metabolism
Humans
Male
Metabolomics methods
Molecular Targeted Therapy
Neoplasm Grading
Neoplasm Staging
Prostatic Neoplasms diagnosis
Prostatic Neoplasms drug therapy
Prostatic Neoplasms etiology
Spectrometry, Mass, Electrospray Ionization
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Tandem Mass Spectrometry
Transcriptional Regulator ERG genetics
Transcriptional Regulator ERG metabolism
Lipid Metabolism drug effects
Lipidomics methods
Membrane Lipids metabolism
Prostatic Neoplasms metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1538-7445
- Volume :
- 81
- Issue :
- 19
- Database :
- MEDLINE
- Journal :
- Cancer research
- Publication Type :
- Academic Journal
- Accession number :
- 34362796
- Full Text :
- https://doi.org/10.1158/0008-5472.CAN-20-3863