Back to Search Start Over

Lipidomic Profiling of Clinical Prostate Cancer Reveals Targetable Alterations in Membrane Lipid Composition.

Authors :
Butler LM
Mah CY
Machiels J
Vincent AD
Irani S
Mutuku SM
Spotbeen X
Bagadi M
Waltregny D
Moldovan M
Dehairs J
Vanderhoydonc F
Bloch K
Das R
Stahl J
Kench JG
Gevaert T
Derua R
Waelkens E
Nassar ZD
Selth LA
Trim PJ
Snel MF
Lynn DJ
Tilley WD
Horvath LG
Centenera MM
Swinnen JV
Source :
Cancer research [Cancer Res] 2021 Oct 01; Vol. 81 (19), pp. 4981-4993. Date of Electronic Publication: 2021 Aug 06.
Publication Year :
2021

Abstract

Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues ( n = 21), independent unmatched tissues ( n = 47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide ( n = 43). Significant differences in lipid composition were detected and spatially visualized in tumors compared with matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting. SIGNIFICANCE: This study identifies malignancy and treatment-associated changes in lipid composition of clinical prostate cancer tissues, suggesting that mediators of these lipidomic changes could be targeted using existing metabolic agents.<br /> (©2021 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1538-7445
Volume :
81
Issue :
19
Database :
MEDLINE
Journal :
Cancer research
Publication Type :
Academic Journal
Accession number :
34362796
Full Text :
https://doi.org/10.1158/0008-5472.CAN-20-3863