Back to Search
Start Over
Vertebral bone marrow T2* mapping using chemical shift encoding-based water-fat separation in the quantitative analysis of lumbar osteoporosis and osteoporotic fractures.
- Source :
-
Quantitative imaging in medicine and surgery [Quant Imaging Med Surg] 2021 Aug; Vol. 11 (8), pp. 3715-3725. - Publication Year :
- 2021
-
Abstract
- Background: Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic vs. traumatic) and the microstructure of the bone when applied to vertebral bone marrow.<br />Methods: The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models.<br />Results: Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 vs. 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 vs. 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 vs. 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 vs. 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 vs . 8.1±2.4 ms, P=0.10).<br />Conclusions: T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.<br />Competing Interests: Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/qims-20-1373). DCK receives grant support from Philips Healthcare. The other authors have no conflicts of interest to declare.<br /> (2021 Quantitative Imaging in Medicine and Surgery. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2223-4292
- Volume :
- 11
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Quantitative imaging in medicine and surgery
- Publication Type :
- Academic Journal
- Accession number :
- 34341744
- Full Text :
- https://doi.org/10.21037/qims-20-1373