Back to Search
Start Over
Investigating the impact of the CT Hounsfield unit range on radiomic feature stability using dual energy CT data.
- Source :
-
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2021 Aug; Vol. 88, pp. 272-277. Date of Electronic Publication: 2021 Jul 27. - Publication Year :
- 2021
-
Abstract
- Purpose: Radiomic texture calculation requires discretizing image intensities within the region-of-interest. FBN (fixed-bin-number), FBS (fixed-bin-size) and FBN and FBS with intensity equalization (FBNequal, FBSequal) are four discretization approaches. A crucial choice is the voxel intensity (Hounsfield units, or HU) binning range. We assessed the effect of this choice on radiomic features.<br />Methods: The dataset comprised 95 patients with head-and-neck squamous-cell-carcinoma. Dual energy CT data was reconstructed at 21 electron energies (40, 45,… 140 keV). Each of 94 texture features were calculated with 64 extraction parameters. All features were calculated five times: original choice, left shift (-10/-20 HU), right shift (+10/+20 HU). For each feature, Spearman correlation between nominal and four variants were calculated to determine feature stability. This was done for six texture feature types (GLCM, GLRLM, GLSZM, GLDZM, NGTDM, and NGLDM) separately. This analysis was repeated for the four binning algorithms. Effect of feature instability on predictive ability was studied for lymphadenopathy as endpoint.<br />Results: FBN and FBNequal algorithms showed good stability (correlation values consistently >0.9). For FBS and FBSequal algorithms, while median values exceeded 0.9, the 95% lower bound decreased as a function of energy, with poor performance over the entire spectrum. FBNequal was the most stable algorithm, and FBS the least.<br />Conclusions: We believe this is the first multi-energy systematic study of the impact of CT HU range used during intensity discretization for radiomic feature extraction. Future analyses should account for this source of uncertainty when evaluating the robustness of their radiomic signature.<br /> (Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.)
- Subjects :
- Humans
Tomography, X-Ray Computed
Algorithms
Image Processing, Computer-Assisted
Subjects
Details
- Language :
- English
- ISSN :
- 1724-191X
- Volume :
- 88
- Database :
- MEDLINE
- Journal :
- Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
- Publication Type :
- Academic Journal
- Accession number :
- 34329921
- Full Text :
- https://doi.org/10.1016/j.ejmp.2021.07.023