Back to Search Start Over

CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model.

Authors :
Uddin MJ
Jeong J
Pak ES
Ha H
Source :
Oxidative medicine and cellular longevity [Oxid Med Cell Longev] 2021 Jul 06; Vol. 2021, pp. 9947772. Date of Electronic Publication: 2021 Jul 06 (Print Publication: 2021).
Publication Year :
2021

Abstract

Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H <subscript>2</subscript> O <subscript>2</subscript> -stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.<br />Competing Interests: The authors declare no conflicts of interest.<br /> (Copyright © 2021 Md Jamal Uddin et al.)

Details

Language :
English
ISSN :
1942-0994
Volume :
2021
Database :
MEDLINE
Journal :
Oxidative medicine and cellular longevity
Publication Type :
Academic Journal
Accession number :
34326922
Full Text :
https://doi.org/10.1155/2021/9947772