Back to Search Start Over

A specialized myodural bridge named occipital-dural muscle in the narrow-ridged finless porpoise (Neophocaena asiaeorientalis).

Authors :
Zhang ZX
Gong J
Yu SB
Li C
Sun JX
Ding SW
Ma GJ
Sun SZ
Zhou L
Hack GD
Zheng N
Sui HJ
Source :
Scientific reports [Sci Rep] 2021 Jul 29; Vol. 11 (1), pp. 15485. Date of Electronic Publication: 2021 Jul 29.
Publication Year :
2021

Abstract

A dense bridge-like tissue named the myodural bridge (MDB) connecting the suboccipital muscles to the spinal dura mater was originally discovered in humans. However, recent animal studies have revealed that the MDB appears to be an evolutionarily conserved anatomic structure which may have significant physiological functions. Our previous investigations have confirmed the existence of the MDB in finless porpoises. The present authors conducted research to expound on the specificity of the MDB in the porpoise Neophocana asiaeorientalis (N.asiaeorientalis). Five carcasses of N.asiaeorientalis, with formalin fixation, were used for the present study. Two of the carcasses were used for head and neck CT scanning, three-dimensional reconstructions, and gross dissection of the suboccipital region. Another carcass was used for a P45 plastination study. Also, a carcass was used for a histological analysis of the suboccipital region and also one was used for a Scanning Electron Microscopy study. The results revealed that the MDB of the N.asiaeorientalis is actually an independent muscle originating from the caudal border of the occiput, passing through the posterior atlanto-occipital interspace, and then attaches to the cervical spinal dura mater. Thus the so called MDB of the N.asiaeorientalis is actually an independent and uniquely specialized muscle. Based on the origin and insertion of this muscle, the present authors name it the 'Occipital-Dural Muscle'. It appears that the direct pull of this muscle on the cervical spinal dura mater may affect the circulation of the cerebrospinal fluid by altering the volume of the subarachnoid space via a pumping action.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
34326428
Full Text :
https://doi.org/10.1038/s41598-021-95070-y