Back to Search Start Over

A theoretical framework for general design of two-materials composed diffractive fresnel lens.

Authors :
Lin MY
Chuang CH
Chou TA
Chen CY
Source :
Scientific reports [Sci Rep] 2021 Jul 29; Vol. 11 (1), pp. 15466. Date of Electronic Publication: 2021 Jul 29.
Publication Year :
2021

Abstract

Near 100% of diffractive efficiency for diffractive optical elements (DOEs) is one of the most required optical performances in broadband imaging applications. Of all flat DOEs, none seems to interest researchers as much as Two-Materials Composed Diffractive Fresnel Lens (TM-DFL) among the most promising flat DOEs. An approach of the near 100% of diffractive efficiency for TM-DFL once developed to determine the design rules mainly takes the advantage of numerical computation by methods of mapping and fitting. Despite a curved line of near 100% of diffractive efficiency can be generated in the Abbe and partial dispersion diagram, it is not able to analytically elaborate the relationship between two optical materials that compose the TM-DFL. Here, we present a theoretical framework, based on the fundaments of Cauchy's equation, Abbe number, partial dispersion, and the diffraction theory of Fresnel lens, for obtaining a general design formalism, so to perform the perfect material matching between two different optical materials for achieving the near 100% of diffractive efficiency for TM-DFL in the broadband imaging applications.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
34326425
Full Text :
https://doi.org/10.1038/s41598-021-94953-4