Back to Search Start Over

Combination of Antiviral Drugs to Inhibit SARS-CoV-2 Polymerase and Exonuclease as Potential COVID-19 Therapeutics.

Authors :
Wang X
Sacramento CQ
Jockusch S
Chaves OA
Tao C
Fintelman-Rodrigues N
Chien M
Temerozo JR
Li X
Kumar S
Xie W
Patel DJ
Meyer C
Garzia A
Tuschl T
Bozza PT
Russo JJ
Souza TML
Ju J
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2021 Jul 21. Date of Electronic Publication: 2021 Jul 21.
Publication Year :
2021

Abstract

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
34312622
Full Text :
https://doi.org/10.1101/2021.07.21.453274