Back to Search Start Over

An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1.

Authors :
Liu L
Deng CJ
Duan YL
Ye CJ
Gong DH
Guo XL
Lee WH
Zhou J
Li SA
Zhang Y
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2021 Aug 01; Vol. 207 (3), pp. 888-901. Date of Electronic Publication: 2021 Jul 21.
Publication Year :
2021

Abstract

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima , directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.<br /> (Copyright © 2021 by The American Association of Immunologists, Inc.)

Details

Language :
English
ISSN :
1550-6606
Volume :
207
Issue :
3
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
34290105
Full Text :
https://doi.org/10.4049/jimmunol.2001056