Back to Search
Start Over
Genetic Diversity and Azole Resistance Among Natural Aspergillus fumigatus Populations in Yunnan, China.
- Source :
-
Microbial ecology [Microb Ecol] 2022 May; Vol. 83 (4), pp. 869-885. Date of Electronic Publication: 2021 Jul 19. - Publication Year :
- 2022
-
Abstract
- The emergence and spread of azole resistance alleles in clinical and environmental isolates of Aspergillus fumigatus is a global human health concern and endangers the "One Health" approach in our fight against antifungal resistance (AFR) in this pathogen. A major challenge to combat AFR in A. fumigatus is the massive aerial dispersal ability of its asexual spores. Our recent fine-scale survey of greenhouse populations of A. fumigatus near Kunming, Yunnan, China, suggested that the use of azole fungicides for plant protection was likely a major driver of the high-frequency azole-resistant A. fumigatus (ARAF) in greenhouses. Here, we investigated the potential spread of those ARAF and the structure of geographic populations of A. fumigatus by analyzing 452 isolates from 19 geographic locations across Yunnan. We found lower frequencies of ARAF in these outdoor populations than those in greenhouses near Kunming, but there were abundant new alleles and new genotypes, including those associated with azole resistance, consistent with multiple independent origins of ARAF across Yunnan. Interestingly, among the four ecological niches, the sediments of a large lake near Kunming were found to have the highest frequency of ARAF (~ 43%). While most genetic variations were observed within the 19 local populations, statistically significant genetic differentiations were found between many subpopulations within Yunnan. Furthermore, similar to greenhouse populations, these outdoor populations of A. fumigatus in Yunnan were significantly different from those in other parts of the world. Our results call for increased attention to local and regional studies of this fungal pathogen to help develop targeted control strategies against ARAF.<br /> (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
Details
- Language :
- English
- ISSN :
- 1432-184X
- Volume :
- 83
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Microbial ecology
- Publication Type :
- Academic Journal
- Accession number :
- 34279697
- Full Text :
- https://doi.org/10.1007/s00248-021-01804-w