Back to Search
Start Over
Evidence from nitrogen-15 and solvent deuterium isotope effects on the chemical mechanism of adenosine deaminase.
- Source :
-
Biochemistry [Biochemistry] 1987 Nov 17; Vol. 26 (23), pp. 7378-84. - Publication Year :
- 1987
-
Abstract
- We have determined 15N isotope effects and solvent deuterium isotope effects for adenosine deaminase using both adenosine and the slow alternate substrate 7,8-dihydro-8-oxoadenosine. With adenosine, 15N isotope effects were 1.0040 in H2O and 1.0023 in D2O, and the solvent deuterium isotope effect was 0.77. With 7,8-dihydro-8-oxoadenosine, 15N isotope effects were 1.015 in H2O and 1.0131 in D2O, and the solvent deuterium isotope effect was 0.45. The inverse solvent deuterium isotope effect shows that the fractionation factor of a proton, which is originally less than 0.6, increases to near unity during formation of the tetrahedral intermediate from which ammonia is released. Proton inventories for 1/V and 1/(V/K) vs percent D2O are linear, indicating that a single proton has its fractionation factor altered during the reaction. We conclude that a sulfhydryl group on the enzyme donates its proton to oxygen or nitrogen during this step. pH profiles with 7,8-dihydro-8-oxoadenosine suggest that the pK of this sulfhydryl group is 8.45. The inhibition of adenosine deaminase by cadmium also shows a pK of approximately 9 from the pKi profile. Quantitative analysis of the isotope effects suggests an intrinsic 15N isotope effect for the release of ammonia from the tetrahedral intermediate of approximately 1.03 for both substrates; however, the partition ratio of this intermediate for release of ammonia as opposed to back-reaction is 14 times greater for adenosine (1.4) than for 7,8-dihydro-8-oxoadenosine (0.1).(ABSTRACT TRUNCATED AT 250 WORDS)
Details
- Language :
- English
- ISSN :
- 0006-2960
- Volume :
- 26
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 3427079
- Full Text :
- https://doi.org/10.1021/bi00397a027