Back to Search
Start Over
Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis.
- Source :
-
Kidney international [Kidney Int] 2021 Oct; Vol. 100 (4), pp. 850-869. Date of Electronic Publication: 2021 Jul 10. - Publication Year :
- 2021
-
Abstract
- Adverse effects of calcineurin inhibitors (CNI), such as hypertension, hyperkalemia, acidosis, hypomagnesemia and hypercalciuria, have been linked to dysfunction of the distal convoluted tubule (DCT). To test this, we generated a mouse model with an inducible DCT-specific deletion of the calcineurin regulatory subunit B alpha (CnB1-KO). Three weeks after CnB1 deletion, these mice exhibited hypomagnesemia and acidosis, but no hypertension, hyperkalemia or hypercalciuria. Consistent with the hypomagnesemia, CnB1-KO mice showed a downregulation of proteins implicated in DCT magnesium transport, including TRPM6, CNNM2, SLC41A3 and parvalbumin but expression of calcium channel TRPV5 in the kidney was unchanged. The abundance of the chloride/bicarbonate exchanger pendrin was increased, likely explaining the acidosis. Plasma aldosterone levels, kidney renin expression, abundance of phosphorylated sodium chloride-cotransporter and abundance of the epithelial sodium channel were similar in control and CnB1-KO mice, consistent with a normal sodium balance. Long-term potassium homeostasis was maintained in CnB1-KO mice, but in-vivo and ex-vivo experiments indicated that CnB1 contributes to acute regulation of potassium balance and sodium chloride-cotransporter. Tacrolimus treatment of control and CnB1-KO mice demonstrated that CNI-related hypomagnesemia is linked to impaired calcineurin-signaling in DCT, while hypocalciuria and hyponatremia occur independently of CnB1 in DCT. Transcriptome and proteome analyses of isolated DCTs demonstrated that CnB1 deletion impacts the expression of several DCT-specific proteins and signaling pathways. Thus, our data support a critical role of calcineurin for DCT function and provide novel insights into the pathophysiology of CNI side effects and involved molecular players in the DCT.<br /> (Copyright © 2021 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1523-1755
- Volume :
- 100
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Kidney international
- Publication Type :
- Academic Journal
- Accession number :
- 34252449
- Full Text :
- https://doi.org/10.1016/j.kint.2021.06.030