Back to Search Start Over

Antibiotic accumulation, growth performance, intestinal diversification, and function of Nile tilapia (Oreochromis niloticus) feed by diets supplemented with different doses of sulfamethoxazole.

Authors :
Fang L
Chen X
Shan X
Qiu L
Fan L
Meng S
Song C
Source :
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Dec; Vol. 28 (46), pp. 65255-65264. Date of Electronic Publication: 2021 Jul 06.
Publication Year :
2021

Abstract

To comprehensively investigate the effects of exposure to legal doses of sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus), fishes were exposed to diets supplemented with different doses of SMZ (NS, normal feed; LS, 20 mg/kg·day; MS, 200 mg/kg·day; and HS, 1000 mg/kg·day) for 4 weeks and then fed with normal feed for 4 weeks. General SMZ accumulation, growth performance, intestinal short-chain fatty acids, intestinal flora diversity, composition, and function were systemically evaluated. Results indicated that the SMZ accumulation in O. niloticus muscles, intestinal contents, and aquaculture environment positively correlated to the exposure dose. The growth performance, measured by weight increase, was MS>LS>NS, while HS antibiotics retarded the growth. SMZ-exposed O. niloticus had an increased number of fat particles in the liver and a change in the content of intestinal SCFAs. Moreover, SMZ exposure changed the biological diversity of the intestinal flora and subsequently induced microbiota dysbiosis, primarily inhibiting the growth of Fusobacteria, especially in HS group. Overall, exposure to higher SMZ doses than the recommended ones impair general intestinal functions and provokes health risk in fish. This study highlights the importance of rational and regulated use of SMZ in aquaculture.<br /> (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1614-7499
Volume :
28
Issue :
46
Database :
MEDLINE
Journal :
Environmental science and pollution research international
Publication Type :
Academic Journal
Accession number :
34231147
Full Text :
https://doi.org/10.1007/s11356-021-15253-y