Back to Search
Start Over
A hybrid simulation model to study the impact of combined interventions on Ebola epidemic.
- Source :
-
PloS one [PLoS One] 2021 Jul 06; Vol. 16 (7), pp. e0254044. Date of Electronic Publication: 2021 Jul 06 (Print Publication: 2021). - Publication Year :
- 2021
-
Abstract
- Pandemics have been recognized as a serious global threat to humanity. To effectively prevent the spread and outbreak of the epidemic disease, theoretical models intended to depict the disease dynamics have served as the main tools to understand its underlying mechanisms and thus interrupt its transmission. Two commonly-used models are mean-field compartmental models and agent-based models (ABM). The former ones are analytically tractable for describing the dynamics of subpopulations by cannot explicitly consider the details of individual movements. The latter one is mainly used to the spread of epidemics at a microscopic level but have limited simulation scale for the randomness of the results. To overcome current limitations, a hierarchical hybrid modeling and simulation method, combining mean-field compartmental model and ABM, is proposed in this paper. Based on this method, we build a hybrid model, which takes both individual heterogeneity and the dynamics of sub-populations into account. The proposed model also investigates the impact of combined interventions (i. e. vaccination and pre-deployment training) for healthcare workers (HCWs) on the spread of disease. Taking the case of 2014-2015 Ebola Virus Disease (EVD) in Sierra Leone as an example, we examine its spreading mechanism and evaluate the effect of prevention by our parameterized and validated hybrid model. According to our simulation results, an optimal combination of pre-job training and vaccination deployment strategy has been identified. To conclude, our hybrid model helps informing the synergistic disease control strategies and the corresponding hierarchical hybrid modeling and simulation method can further be used to understand the individual dynamics during epidemic spreading in large scale population and help inform disease control strategies for different infectious disease.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Health Education
Health Personnel
Hemorrhagic Fever, Ebola mortality
Humans
Reproducibility of Results
Sierra Leone epidemiology
Systems Analysis
Vaccination
Computer Simulation
Epidemics prevention & control
Hemorrhagic Fever, Ebola epidemiology
Hemorrhagic Fever, Ebola prevention & control
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 16
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 34228758
- Full Text :
- https://doi.org/10.1371/journal.pone.0254044