Back to Search Start Over

A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I.

Authors :
Liao XJ
Xiao HJ
Cao JT
Ren SW
Liu YM
Source :
Talanta [Talanta] 2021 Oct 01; Vol. 233, pp. 122564. Date of Electronic Publication: 2021 May 28.
Publication Year :
2021

Abstract

Photoelectrochemical (PEC) immunoassay is a burgeoning and promising bioanalytical method. However, the practical application of PEC still exist some challenges such as the inevitable damage of biomolecules caused by the PEC system and the unsatisfactory sensitivity for biomarkers with low abundance in real sample. To solve the problems, we integrated the cosensitized structure of Ag2S/ZnO nanocomposities as photoelectrode with photogenerated hole-induced chemical redox cycling amplification (CRCA) strategy to develop a split-type PEC immunosensor for cardiac troponin I (cTnI) with high sensitivity. Initially, the immunoreaction was carried out on the 96-well plates in which alkaline phosphatase (ALP) could catalyze ascorbic acid 2-phosphate (AAP) to generate the signal-reporting species ascorbic acid (AA). Subsequently, the AA participated and the tris (2-carboxyethyl) phosphine (TCEP) mediated chemical redox cycling reaction took place on the photoelectrode, thus leading to signal amplification. Under the optimized conditions, the immunosensor demonstrated a detection limit (LOD) of 3.0 × 10 <superscript>-15</superscript>  g mL <superscript>-1</superscript> with a detection range of 1.0 × 10 <superscript>-14</superscript>  g mL <superscript>-1</superscript> to 1.0 × 10 <superscript>-9</superscript>  g mL <superscript>-1</superscript> for cTnI. Impressively, the proposed method could determine the cTnI in human serum samples with high sensitivity and satisfactory accuracy. Considering the virtues of the photoelectrode and the chemical redox cycling strategy, the method would hold great potential for highly sensitive biosensing and bioanalysis.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3573
Volume :
233
Database :
MEDLINE
Journal :
Talanta
Publication Type :
Academic Journal
Accession number :
34215060
Full Text :
https://doi.org/10.1016/j.talanta.2021.122564