Back to Search Start Over

Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films.

Authors :
Magubane SS
Arendse CJ
Ngqoloda S
Cummings F
Mtshali C
Bolokang AS
Source :
Materials (Basel, Switzerland) [Materials (Basel)] 2021 Jun 24; Vol. 14 (13). Date of Electronic Publication: 2021 Jun 24.
Publication Year :
2021

Abstract

In this article, we used a two-step chemical vapor deposition (CVD) method to synthesize methylammonium lead-tin triiodide perovskite films, MAPb <subscript>1-x</subscript> Sn <subscript>x</subscript> I <subscript>3</subscript> , with x varying from 0 to 1. We successfully controlled the concentration of Sn in the perovskite films and used Rutherford backscattering spectroscopy (RBS) to quantify the composition of the precursor films for conversion into perovskite films. According to the RBS results, increasing the SnCl <subscript>2</subscript> source amount in the reaction chamber translate into an increase in Sn concentration in the films. The crystal structure and the optical properties of perovskite films were examined by X-ray diffraction (XRD) and UV-Vis spectrometry. All the perovskite films depicted similar XRD patterns corresponding to a tetragonal structure with I4cm space group despite the precursor films having different crystal structures. The increasing concentration of Sn in the perovskite films linearly decreased the unit volume from about 988.4 Å <superscript>3</superscript> for MAPbI <subscript>3</subscript> to about 983.3 Å <superscript>3</superscript> for MAPb <subscript>0</subscript> . <subscript>39</subscript> Sn <subscript>0</subscript> . <subscript>61</subscript> I <subscript>3</subscript> , which consequently influenced the optical properties of the films manifested by the decrease in energy bandgap (E <subscript>g</subscript> ) and an increase in the disorder in the band gap. The SEM micrographs depicted improvements in the grain size (0.3-1 µm) and surface coverage of the perovskite films compared with the precursor films.

Details

Language :
English
ISSN :
1996-1944
Volume :
14
Issue :
13
Database :
MEDLINE
Journal :
Materials (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
34202688
Full Text :
https://doi.org/10.3390/ma14133526