Back to Search Start Over

Using Design of Experiments to Optimize a Screening Analytical Methodology Based on Solid-Phase Microextraction/Gas Chromatography for the Determination of Volatile Methylsiloxanes in Water.

Authors :
Bernardo F
González-Hernández P
Ratola N
Pino V
Alves A
Homem V
Source :
Molecules (Basel, Switzerland) [Molecules] 2021 Jun 05; Vol. 26 (11). Date of Electronic Publication: 2021 Jun 05.
Publication Year :
2021

Abstract

Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples.

Details

Language :
English
ISSN :
1420-3049
Volume :
26
Issue :
11
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
34198808
Full Text :
https://doi.org/10.3390/molecules26113429