Back to Search
Start Over
Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles.
- Source :
-
3 Biotech [3 Biotech] 2021 Jun; Vol. 11 (6), pp. 302. Date of Electronic Publication: 2021 May 30. - Publication Year :
- 2021
-
Abstract
- In this study, we have successfully synthesized magnetic nanoparticles (MNPs), functionalised them by silanization and used them for the covalent immobilization of a recombinant small laccase (rSLAC) from Streptomyces coelicolor . The immobilized recombinant laccase (MNP-rSLAC) was subsequently used for the treatment of phenol, 4-chlorophenol (4-CP) and 4-fluorophenol (4-FP). The enzyme completely degraded 80 µg/mL of the selected phenolic compounds within 2 h in the presence of a natural mediator, acetosyringone. The MNP-rSLAC retained > 73% of initial activity (2,6-dimethoxyphenol as substrate) after 10 catalytic cycles and could be easily recovered from the reaction mixture by the application of magnetic field. Furthermore, immobilised rSLAC exhibited better storage stability than its free counterpart. The Michaelis constant (K <subscript>m</subscript> ) value for the immobilised rSLAC was higher than free rSLAC, however the maximum velocity (V <subscript>max</subscript> ) of the immobilised SLAC was similar to that of the free rSLAC. Growth inhibition studies using Escherichia coli showed that rSLAC-mediated treatment of phenolic compounds reduced the toxicity of phenol, 4-CP and 4-FP by 90, 60 and 55%, respectively. Interestingly, the presence of selected metal ions (Co <superscript>2+</superscript> , Cu <superscript>2+</superscript> , Mn <superscript>2+</superscript> ) greatly enhanced the catalytic activity of rSLAC and MNP-rSLAC. This study indicates that immobilized small laccase (MNP-rSLAC) has potential for treating wastewater contaminated with phenolic compounds.<br />Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02854-0.<br />Competing Interests: Conflict of interestThe authors declare that they have no conflict of interest in the publication.<br /> (© King Abdulaziz City for Science and Technology 2021.)
Details
- Language :
- English
- ISSN :
- 2190-572X
- Volume :
- 11
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- 3 Biotech
- Publication Type :
- Academic Journal
- Accession number :
- 34194895
- Full Text :
- https://doi.org/10.1007/s13205-021-02854-0