Back to Search Start Over

Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy.

Authors :
Zong C
Zhang C
Lin P
Yin J
Bai Y
Lin H
Ren B
Cheng JX
Source :
Chemical science [Chem Sci] 2020 Dec 15; Vol. 12 (5), pp. 1930-1936. Date of Electronic Publication: 2020 Dec 15.
Publication Year :
2020

Abstract

Traditional electrochemical measurements based on either current or potential responses only present the average contribution of an entire electrode's surface. Here, we present an electrochemical photothermal reflectance microscope (EPRM) in which a potential-dependent nonlinear photothermal signal is exploited to map an electrochemical process with sub-micron spatial resolution. By using EPRM, we are able to monitor the photothermal signal of a Pt electrode during the electrochemical reaction at an imaging speed of 0.3 s per frame. The potential-dependent photothermal signal, which is sensitive to the free electron density, clearly revealed the evolution of surface species on the Pt surface. Our results agreed well with the reported spectroelectrochemical techniques under similar conditions but with a much faster imaging speed. We further mapped the potential oscillation during the oxidation of formic acid on the Pt surface. The photothermal images from the Pt electrode well matched the potential change. This technique opens new prospects for real-time imaging of surface chemical reaction to reveal the heterogeneity of electrochemical reactivity, which enables broad applications to the study of catalysis, energy storage, and light harvest systems.<br />Competing Interests: There is no conflict to declare.<br /> (This journal is © The Royal Society of Chemistry.)

Details

Language :
English
ISSN :
2041-6520
Volume :
12
Issue :
5
Database :
MEDLINE
Journal :
Chemical science
Publication Type :
Academic Journal
Accession number :
34163957
Full Text :
https://doi.org/10.1039/d0sc05132b